
Invited Paper

A Compiler System Supporting Memory Shared by Heterogeneous Machines

Hitoshi Aida* and Shiro Kawai**

*Emeritus Professor, The University of Tokyo, Japan
**Scheme Arts, LLC, USA

hitoshi-aida@g.ecc.u-tokyo.ac.jp, shiro@acm.org

Abstract - There are several cases in which non-native data

representations should be handled. In this paper, a compiler

system to support memory shared by heterogeneous machines
is discussed. A keyword standard for representation-type-

specifier and another keyword shared for storage-class-
specifier are added to language C. A prototype compiler is

implemented on SPARCstation (SunOS 4.1.3) and IBM

compatible PC (386bsd-0.1). Overhead of endian conversion
is small for the machines equipped with byte-swap instruction.

Keywords: Heterogeneous shared memory, C language
extension, Representation type, Endian conversion.

1 INTRODUCTION

As shown in Table 1, data representation of compiler

systems of computer languages such as C [4] varies in many

aspects reflecting CPU architecture, OS environment and so
on. Usually, the system only supports the representation by

which programs are most efficiently executed. We call it

‘native’.
There are several cases, however, representations other than

native should be handled. For example, in TCP/IP, the most

heavily used communication protocol in the Internet,
addresses and data lengths should be represented by most

significant byte first order (big endian). In TCP/IP

programming, macros such as htonl() (host to network long)
or ntohs() (network to host short) are usually used to ensure

correct data representation in TCP/IP headers and other

places.
The authors used to build a sensor data dispatch system in

which the sensor data written by one of the workstations to

GM(Global Memory) on its external bus is captured by
DBC(Distributed Broadcast Controller), is broadcast through

communication bus, and is eventually copied to GM of other

workstations. The workstations need not be same machine
model. In this environment, in addition to the difference of

data representation owing to different CPU architectures,

difference of the address of GM seen from those CPUs due to
the difference of OS environment becomes problem,

especially if pointer variables are placed in GM.

In this paper, assuming that memory is shared by machines
with different CPU architecture or OS environment, such as

shown above, a compiler system which realizes both efficient

access to the shared memory and high source code portability
by extending C language is discussed.

Table 1: Example difference of data representation

CPU architecture dependent:
Byte ordering of multibyte data (endian) [5]

Alignment of multibyte data
Representation of negative/floating point numbers

OS dependent:
Character code set

Memory mapping scheme

Language dependent:

Representation of character strings

Figure 1: Distributed broadcast memory shared by

heterogeneous machines

2 EXTENSION OF C LANGUAGE

2.1 Operational Types and Representation

Types

Data type declaration in standard C consists of three parts,

‘type-qualifier’, ‘storage-class-specifier’ and ‘type-specifier’,

as roughly shown in Fig 2. Within these, ‘type-specifier’ is
the most essential part which specifies the set of operations

applicable to the type and the meaning of those operations.

For example, bit shift operations and bitwise logical
operations can be applied to char and int, but not to float or

double. Another example is that the difference operation of

two pointers is only allowed when those pointers point to the
same data type except for using explicit cast, and is measured

by the size of objects they point.

1

CPU

LM

GM

DBC

CPU

LM

GM

DBC

CPU

LM

GM

DBC

workstation

communication bus

VME bus

International Journal of Informatics Society, VOL.16, NO.1 (2024) 43-48

ISSN1883-4566 © 2024 - Informatics Society and the authors. All rights reserved.

43

Figure 2: Data types in standard C

Figure 3: Representation type specifier (not final form)

Here we call the data type specified by ‘type-specifier’ of

standard C as ‘operational type’. We also change the name

‘type-specifier’ to ‘operational-type-specifier’ for clarity.
As in the case of shared memory described before, different

representations of the same operational type could be used.

To handle such different representations efficiently and in a
portable manner, direct language support is desirable. Here

we propose inserting ‘representation-type-specifier’ in the
type declaration in C, such as shown in Fig 3.

When the program accesses variables of which

representation type is different from native, automatic
conversion is performed. This is much the same as char type

variables are converted to int when read and upper bits are

truncated when written in standard C.

2.2 Representation Type of Pointers

Pointers are heavily used in C. As for pointers,
representation type of both the pointer themselves and the

objects pointed by pointers should be considered. Of these,

if the representation type of the objects pointed by the
pointers are different, the pointers should be supposed to be

different operational type. As previously mentioned, in

standard C, difference operation of two pointers is only
allowed when two pointers point to same data type. Similarly,

if pointers are assigned by force using cast to other pointers

with different pointed representation type, usage of assigned
pointers afterwards may produce unexpected results.

As for the representation type of pointers themselves, in

addition to the byte ordering as with integer or floating point
data, it should cope with the fact that shared memory might

reside different address space reflecting different OS

environments. Typical solutions are: (a) represent pointers as
the offset from top address of the shared memory, and (b)

represent pointers as the relative offset from the pointers

themselves. Figure 4 shows a latter example.

Figure 4: A pointer in the shared memory represented by

relative offset

Figure 5: Representation type of pointers (not final form)

In standard C, type-qualifiers such as const can be placed

both before and after the pointer declaration mark * to

distinguish whether the object pointed to the pointer is not
allowed to be assigned or the pointer itself is not allowed to

be assigned. In the extended C, in addition to type-qualifiers,

we allow representation-type-specifiers to be placed after
pointer declaration mark * to specify the representation type

of the pointer itself.

2.3 Representation Type Standard and

Storage Class Shared

Thinking of typical application of heterogeneous share
memory system, it is unlikely to use many different

representation types in a single application. It is probably

enough to use two representation types in each machine: one
for shared variables and one for the native representation type

of the machine. Thus, in the proposed extended C language,

instead of describing explicit representation-type-specifiers
such as big_endian or base_offset, we allow only one

representation-type-specifier keyword standard in the source

code, and the detailed specification of standard representation
type is separately fed to the compiler system. This will

increase the portability of source code.

All the data in the shared memory is supposed to be standard

representation type. On the other hand, in cases such as

swapping two data in the shared memory, we want to hold

standard representation type data temporally on registers or in
the local memory without converting to native representation.

To specify variables be located in the shared memory,

additional keyword shared for storage-class-specifier is added
to the language. For standard representation of pointers such

as the offset from top address of the shared memory to be

meaningful, they should point to the shared memory.

1

p

*pp

*p

p

*p

Address space
of machine 1

Address space
of machine 2

Shared Memory

H.Aida et al. / A Compiler System Supporting Memory Shared by Heterogeneous Machines44

Figure 6: Possible combination of representation type and

storage class

Therefore, we assume following constraints between

representation type standard and storage class shared:

Constraint 1:

Representation type of variables with storage class shared
should be standard.

Constraint 2:
Pointers with representation type standard should point to

objects with storage class shared. (For example, they

cannot point to functions.)

From these constraints, variables with storage class shared

or variables pointed by pointers with representation type
standard are implied to have representation type standard:

shared int x;
→ shared standard int x;

int *standard s;
→ standard int *standard s;

shared int *p;
→ shared standard int *standard p;

There are three combinations for whether the variables are

located in the local memory or in the shared memory, and

whether the representation type is native or standard for non-
pointer variables, and four combinations for direct pointers.

As for structures, all the members of the structures with

representation type standard automatically become standard
representation type. On the other hand, non-standard

representation type structures may have mixture of standard

representation type members and non-standard representation
type members.

standard struct {
 char c;

 int i, j;
 double d;

} t;

↓
standard struct {

 standard char c;
 standard int i, j;

Figure 7: Typical compilation steps for standard C

 standard double d;

} t;

3 IMPLEMENTATION

Compiler systems of standard C usually consist of several
steps as shown in Fig 7. To implement extended C language,

best performance is achieved by modifying the compiler in

the narrow sense, the second step. However, in cases such as
the source code of the compiler for the target CPU

architecture is not available, fairly large portion of the

features of the extended language can be handled by the
preprocessor, the first step. In the following sections, we use

preprocessor approach as an example to explain the essence

of implementation.

3.1 Representation Type Conversion

Conversion of representation types is the most essential part
in the implementation of extended C language.

First of all, compiler system should allocate just enough

space for standard representation typed variables. If the
conversion is processed by the preprocessor and standard

typed pointers are represented as either offset from the top

address of shared memory area or relative offset from the
pointers themselves, it is natural to convert them to

declarations of simple integer variables rather than pointers:

standard int x, *p;

long x, p;

To access standard representation typed variables,
representation type conversion from/to native representation

type is needed. In the following, we borrow TCP/IP notations

ntohl() for conversion from standard representation to native
representation and htonl() for conversion from native

representation to standard representation.

standard int x;

int y;

1

int y;

standard int z;

standard int *r;

int *q;

shared int x;

shared int *p;standard int *standard s;

local memory shared memory

int *standard s;

=

linkage editor

assembler

compiler

preprocessor

C source code

macro-expanded C

assembly language

object code

executable file

International Journal of Informatics Society, VOL.16, NO.1 (2024) 43-48 45

 y = x;
 x = y;

long x;

int y;

 y = ntohl(x);
 x = htonl(y);

To access the objects pointed by standard-type pointers,
conversions are needed for both pointers themselves and the

objects pointed by pointers. The following illustrates the

possible preprocessor conversion when standard-type pointers
are represented by the offsets from top address of the shared

memory area. Here _GM denotes the top address of the shared

memory area.

int *standard p;

int y;

 y = *p;

extern void *_GM;

long p;
int y;

 y = ntohl(*(long *)(_GM + ntohl(p)));

If standard pointers are represented by relative addresses,
preprocessor conversion may look like the following:

int *standard p;
int y;

 y = *p;

long p;
int y;

 y = ntohl(*(long *)

((void *)&p + ntohl(p)));

In this case, even simple assignments of pointers needs

arithmetic operations:

int *standard p, *standard s;

 p = s;

long p, s;

 p = htonl(ntohl(s) +
 ((void*)&s - (void*)&p));

Byte order (endian) conversion between standard and native
representation types can be implemented as C functions.

Figure 8(a) shows an example using bit shift and bitwise

logical operations, while Fig 8(b) shows an example using a
union.

long convert_endian(long data)

{
 return (((data << 24) & 0xff000000) |

((data << 8) & 0x00ff0000) |
((data >> 8) & 0x0000ff00) |

((data >> 24) & 0x000000ff));

}
(a)

long convert_endian(long data)

{

 union { long l; char c[4] } in, out;

 in.l = data;
 out.c[0] = in.c[3];

 out.c[1] = in.c[2];

 out.c[2] = in.c[1];
 out.c[3] = in.c[0];

 return out.l;
}

(b)

Figure 8: C source code examples for endian conversion

Figure 9: Inline assembly expansion for endian conversion

To reduce the overhead of the conversion, expansion of

macros similar to Figure 8(a) instead of function call is
probably effective.

If the compiler itself can be modified or the existing

compiler accepts inline assembler expansions, conversion
overhead can be further reduced by embedding machine

instructions such as shown in Fig 9. In contrast to SPARC

[6] CPU architecture which needs fifteen instructions roughly
corresponding to Fig 8(a) for conversion, i486 [7] needs only

one instruction which can be executed in about single

machine cycle.

3.2 Alignment of Structure Members

For the structures of which representation type is standard,
all the offsets of the members from top of the structures

should meet the most severe alignment requirement of the

machines. To meet this requirement by preprocessor, dummy
members are inserted to the declaration of standard structures.

H.Aida et al. / A Compiler System Supporting Memory Shared by Heterogeneous Machines46

Figure 10: Compilation steps for extended C language

standard struct {

 char c;
 int i, j;

 double d;

} t;

struct {
 char c, _dummy1[3];

 long i, j, _dummy2;

 double d;
} t;

3.3 Allocation of Shared Variables

If compiled separately, layout of variables in the shared

memory may become different among machines. As shown

in Fig 10, the compiler (or the preprocessor) is modified to
collect all declarations of shared storage class variables in all

source files and another compiler step is added to fix the

layout of shared memory satisfying the most severe
alignment requirement of the machines, which is fed to the

linkage editors. Furthermore, a routine to map the shared

memory to the address determined at the compilation time
should be added to the startup time of the execution in each

machine.

4 PERFORMANCE EVALUATION

As one of the experiments to show the practicality and

effectiveness of proposed compiler system, we measured the
overhead of representation type conversion. In the

experiment, two SPARCstations (big endian, SunOS 4.1.3)

and one IBM PC compatible machine called i486pc (little
endian, 386bsd-0.1) are connected by replicated type shared

memory called SCRAMNet [8]. Parallel sorting algorithm

known as Batcher's Merge-Exchange Sort [9] was
implemented on the hardware. Figure 11 shows performance

of single processor execution by relative value to the case of:

(a) SPARCstation

(b) i486pc

Figure 11: Overhead of endian conversion

⚫ standard representation type is set to the same endian as

the native representation type and compiled by the
proposed compiler system (denoted as ‘no conversion’).

The other two cases are:

⚫ standard representation type is set to the opposite endian

to the native representation type and compiled by the
proposed compiler system (denoted as ‘conversion by

xcc’)

⚫ standard representation type is set to the opposite endian

to the native representation type, conversion functions

are written in C, and compiled by GNU CC (denoted as
‘conversion by function call’)

In all the three cases, measurement is done for both sorting
integer data themselves in the shred memory (denoted as

‘integer’), and sorting shared pointers to the data rather than

data themselves (denoted as ‘pointers’).
For both SPARCstation and i486pc, overhead of

representation type conversion is reduced by embedding

instructions for representation type conversion by the
proposed compiler system.

1

linkage editor

assembler

compiler

preprocessor

C source code
for machine 1

macro-expanded C

assembly language

object code

executable file
for machine 1

table of
shared

variables

linkage editor

assembler

compiler

preprocessor

C source code
for machine 2

macro-expanded C

assembly language

object code

executable file
for machine 2

address
allocation

1

1

International Journal of Informatics Society, VOL.16, NO.1 (2024) 43-48 47

Table 2: Number of instructions in the innermost loop

SPARCstation i486pc

integer pointer integer pointer

Total number of instructions 52 86 33 42

Number of instructions for

endian conversion
30 62 2 8

Especially for i486pc, which has special instruction for

endian conversion, overhead is reduced to less than 10%. On

the other hand, for SPARCstation, even when the proposed
compiler system embed instructions for representation type

conversions, overhead reaches 15〜25%. Table 2 shows the

number of instructions in the innermost loop in the assembly
code file. For SPARCstation, the ratio of number of

instructions for representation type conversion to the total

number of instructions is very large, which results in the large
overhead.

Note that, on the hardware used here, absolute performance
(MIPS) of SPARCstation exceeds that of i486pc even

considering overhead of representation type conversion. To

select which endian to use for standard representation type,
many factors such as performance of the processors, load

distribution, access frequency of shared variables should be

considered.

5 CONCLUSION

In this paper, a compiler system to support memory shared

by heterogeneous machines is discussed. A keyword standard

for representation-type-specifier and another keyword shared
for storage-class-specifier are added to language C. A

prototype compiler is implemented on SPARCstation

(SunOS 4.1.3) and IBM compatible PC (386bsd-0.1).
Overhead of endian conversion is small for the machines

equipped with byte-swap instruction.

REFERENCES

[1] T. Saito, H. Aida and S. Kawai, “A Compiler System
Supporting Heterogeneous Shared Memories”, Journal

of Faculty of Engineering, The University of Tokyo, A-

31, pp.46-47 (1993) (in Japanese).
[2] S. Kawai, “A Language Processing System for

Heterogeneous Distributed Shared Memory”, Master’s

Thesis, Graduate School of Engineering, The University
of Tokyo (1993) (in Japanese).

[3] S. Kawai, H. Aida and T. Saito, “A Compiler System for

Heterogeneous Distributed Shared Memory”, The
Special Interest Group Technical Reports of IPSJ, 1992-

DPS-058, pp.189-196 (1992) (in Japanese).

[4] B. W. Kernighan and D. M. Ritchie, “The C
Programming Language (Second Edition)”, Prentice-

Hall (1988).

[5] D. Cohen, “On holy wars and a plea for peace”, IEEE
Computer, Vol.14, No.10, pp.48-54 (1981).

[6] SPARC International Inc., The SPARC Architecture

Manual Version 8 (1992).
[7] Intel Corporation, i486TM Processor Programmer’s

Reference Manual (1990).

[8] SYSTRAN Corporation, SCRAMNetTM Network
Reference Manual (1991).

[9] D. E. Knuth, “The Art of Computer Programming”,

Volume 3, Addison-Wesley (1973).

(Received: January 27, 2024)

(Revised: February 29, 2024)

Hitoshi AIDA received his Doctor's degrees in

electrical engineering from the University of

Tokyo in 1985. He joined the University of

Tokyo as a research associate in 1985, and was

promoted to a lecturer, an associate professor and

a professor of the same university in 1986, 1990

and 1999 respectively. He stayed SRI

international as an international fellow from 1988

to 1990. His research area includes high quality

telecommunication and parallel and distributed

computing. He is a fellow of IPSJ and IEICE, a senior member of IEEE,

and a member of ACM, EAJ, JSSST, JSAI and IEIEJ.

Shiro Kawai is a software consultant and an

actor. He received a Ph.D. in Engineering from

the University of Tokyo and worked for

interactive graphics, digital content production

pipelines, and domain-specific programming

languages. His credits include "Final Fantasy"

videogame and CG movie franchise at Square

USA. He then founded Scheme Arts, LLC, and

developed a Scheme scripting engine "Gauche".

He also appears as an actor in films, TV shows,

and theatres, including "Go For Broke", "Running for Grace", and "Hawaii

Five-0". He is a member of ACM and SAG-AFTRA.

H.Aida et al. / A Compiler System Supporting Memory Shared by Heterogeneous Machines48

