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Abstract - There are several cases in which non-native data 

representations should be handled.  In this paper, a compiler 

system to support memory shared by heterogeneous machines 
is discussed.  A keyword standard for representation-type-

specifier and another keyword shared for storage-class-
specifier are added to language C.  A prototype compiler is 

implemented on SPARCstation (SunOS 4.1.3) and IBM 

compatible PC (386bsd-0.1).  Overhead of endian conversion 
is small for the machines equipped with byte-swap instruction. 

Keywords: Heterogeneous shared memory, C language 
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1 INTRODUCTION 

As shown in Table 1, data representation of compiler 

systems of computer languages such as C [4] varies in many 

aspects reflecting CPU architecture, OS environment and so 
on.  Usually, the system only supports the representation by 

which programs are most efficiently executed.  We call it 

‘native’.  
There are several cases, however, representations other than 

native should be handled.  For example, in TCP/IP, the most 

heavily used communication protocol in the Internet, 
addresses and data lengths should be represented by most 

significant byte first order (big endian).  In TCP/IP 

programming, macros such as htonl() (host to network long) 
or ntohs() (network to host short) are usually used to ensure 

correct data representation in TCP/IP headers and other 

places. 
The authors used to build a sensor data dispatch system in 

which the sensor data written by one of the workstations to 

GM(Global Memory) on its external bus is captured by 
DBC(Distributed Broadcast Controller), is broadcast through 

communication bus, and is eventually copied to GM of other 

workstations.  The workstations need not be same machine 
model.  In this environment, in addition to the difference of 

data representation owing to different CPU architectures, 

difference of the address of GM seen from those CPUs due to 
the difference of OS environment becomes problem, 

especially if pointer variables are placed in GM.  

In this paper, assuming that memory is shared by machines 
with different CPU architecture or OS environment, such as 

shown above, a compiler system which realizes both efficient 

access to the shared memory and high source code portability 
by extending C language is discussed. 

Table 1: Example difference of data representation 

CPU architecture dependent: 
Byte ordering of multibyte data (endian) [5] 

Alignment of multibyte data 
Representation of negative/floating point numbers 

OS dependent: 
Character code set 

Memory mapping scheme 

Language dependent: 

Representation of character strings 

Figure 1: Distributed broadcast memory shared by 

heterogeneous machines 

2 EXTENSION OF C LANGUAGE 

2.1 Operational Types and Representation 

Types 

Data type declaration in standard C consists of three parts, 

‘type-qualifier’, ‘storage-class-specifier’ and ‘type-specifier’, 

as roughly shown in Fig 2.  Within these, ‘type-specifier’ is 
the most essential part which specifies the set of operations 

applicable to the type and the meaning of those operations.  

For example, bit shift operations and bitwise logical 
operations can be applied to char and int, but not to float or 

double.  Another example is that the difference operation of 

two pointers is only allowed when those pointers point to the 
same data type except for using explicit cast, and is measured 

by the size of objects they point.   
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Figure 2: Data types in standard C 

Figure 3: Representation type specifier (not final form) 

Here we call the data type specified by ‘type-specifier’ of 

standard C as ‘operational type’.  We also change the name 

‘type-specifier’ to ‘operational-type-specifier’ for clarity.  
As in the case of shared memory described before, different 

representations of the same operational type could be used.  

To handle such different representations efficiently and in a 
portable manner, direct language support is desirable.  Here 

we propose inserting ‘representation-type-specifier’ in the 
type declaration in C, such as shown in Fig 3.  

When the program accesses variables of which 

representation type is different from native, automatic 
conversion is performed.  This is much the same as char type 

variables are converted to int when read and upper bits are 

truncated when written in standard C.  

2.2 Representation Type of Pointers 

Pointers are heavily used in C.  As for pointers, 
representation type of both the pointer themselves and the 

objects pointed by pointers should be considered.  Of these, 

if the representation type of the objects pointed by the 
pointers are different, the pointers should be supposed to be 

different operational type.  As previously mentioned, in 

standard C, difference operation of two pointers is only 
allowed when two pointers point to same data type.  Similarly, 

if pointers are assigned by force using cast to other pointers 

with different pointed representation type, usage of assigned 
pointers afterwards may produce unexpected results. 

As for the representation type of pointers themselves, in 

addition to the byte ordering as with integer or floating point 
data, it should cope with the fact that shared memory might 

reside different address space reflecting different OS 

environments.  Typical solutions are: (a) represent pointers as 
the offset from top address of the shared memory, and (b) 

represent pointers as the relative offset from the pointers 

themselves.  Figure 4 shows a latter example.  

Figure 4: A pointer in the shared memory represented by 

relative offset 

Figure 5: Representation type of pointers (not final form) 

In standard C, type-qualifiers such as const can be placed 

both before and after the pointer declaration mark * to 

distinguish whether the object pointed to the pointer is not 
allowed to be assigned or the pointer itself is not allowed to 

be assigned.  In the extended C, in addition to type-qualifiers, 

we allow representation-type-specifiers to be placed after 
pointer declaration mark * to specify the representation type 

of the pointer itself. 

2.3 Representation Type Standard and 

Storage Class Shared  

Thinking of typical application of heterogeneous share 
memory system, it is unlikely to use many different 

representation types in a single application.  It is probably 

enough to use two representation types in each machine: one 
for shared variables and one for the native representation type 

of the machine.  Thus, in the proposed extended C language, 

instead of describing explicit representation-type-specifiers 
such as big_endian or base_offset, we allow only one 

representation-type-specifier keyword standard in the source 

code, and the detailed specification of standard representation 
type is separately fed to the compiler system.  This will 

increase the portability of source code. 

All the data in the shared memory is supposed to be standard 

representation type.  On the other hand, in cases such as 

swapping two data in the shared memory, we want to hold 

standard representation type data temporally on registers or in 
the local memory without converting to native representation. 

To specify variables be located in the shared memory, 

additional keyword shared for storage-class-specifier is added 
to the language.  For standard representation of pointers such 

as the offset from top address of the shared memory to be 

meaningful, they should point to the shared memory.  

1

p

*pp

*p

p

*p

Address space
of machine 1

Address space
of machine 2

Shared Memory

H.Aida et al. / A Compiler System Supporting Memory Shared by Heterogeneous Machines44



Figure 6: Possible combination of representation type and 

storage class 

Therefore, we assume following constraints between 

representation type standard and storage class shared:  

Constraint 1: 

Representation type of variables with storage class shared 
should be standard. 

Constraint 2: 
Pointers with representation type standard should point to 

objects with storage class shared.  (For example, they 

cannot point to functions.) 

From these constraints, variables with storage class shared 

or variables pointed by pointers with representation type 
standard are implied to have representation type standard: 

shared int x; 
→ shared standard int x; 

int *standard s; 
→ standard int *standard s; 

shared int *p; 
→ shared standard int *standard p;

There are three combinations for whether the variables are 

located in the local memory or in the shared memory, and 

whether the representation type is native or standard for non-
pointer variables, and four combinations for direct pointers. 

As for structures, all the members of the structures with 

representation type standard automatically become standard 
representation type.  On the other hand, non-standard 

representation type structures may have mixture of standard 

representation type members and non-standard representation 
type members.  

standard struct { 
    char c; 

    int i, j; 
    double d; 

} t; 

↓ 
standard struct { 

    standard char c; 
    standard int i, j; 

Figure 7: Typical compilation steps for standard C 

    standard double d; 

} t; 

3 IMPLEMENTATION 

Compiler systems of standard C usually consist of several 
steps as shown in Fig 7.  To implement extended C language, 

best performance is achieved by modifying the compiler in 

the narrow sense, the second step.  However, in cases such as 
the source code of the compiler for the target CPU 

architecture is not available, fairly large portion of the 

features of the extended language can be handled by the 
preprocessor, the first step.  In the following sections, we use 

preprocessor approach as an example to explain the essence 

of implementation. 

3.1 Representation Type Conversion 

Conversion of representation types is the most essential part 
in the implementation of extended C language. 

First of all, compiler system should allocate just enough 

space for standard representation typed variables.  If the 
conversion is processed by the preprocessor and standard 

typed pointers are represented as either offset from the top 

address of shared memory area or relative offset from the 
pointers themselves, it is natural to convert them to 

declarations of simple integer variables rather than pointers:  

standard int x, *p; 

long x, p; 

To access standard representation typed variables, 
representation type conversion from/to native representation 

type is needed.  In the following, we borrow TCP/IP notations 

ntohl() for conversion from standard representation to native 
representation and htonl() for conversion from native 

representation to standard representation. 

standard int x; 

int y; 
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    y = x; 
    x = y; 

long x; 

int y; 

    y = ntohl(x); 
    x = htonl(y); 

To access the objects pointed by standard-type pointers, 
conversions are needed for both pointers themselves and the 

objects pointed by pointers.  The following illustrates the 

possible preprocessor conversion when standard-type pointers 
are represented by the offsets from top address of the shared 

memory area.  Here _GM denotes the top address of the shared 

memory area. 

int *standard p; 

int y; 

    y = *p; 

extern void *_GM; 

long p; 
int y; 

    y = ntohl(*(long *)(_GM + ntohl(p))); 

If standard pointers are represented by relative addresses, 
preprocessor conversion may look like the following: 

int *standard p; 
int y; 

    y = *p; 

long p; 
int y; 

    y = ntohl(*(long *) 

((void *)&p + ntohl(p))); 

In this case, even simple assignments of pointers needs 

arithmetic operations: 

int *standard p, *standard s; 

    p = s; 

long p, s; 

    p = htonl(ntohl(s) + 
 ((void*)&s - (void*)&p)); 

Byte order (endian) conversion between standard and native 
representation types can be implemented as C functions.  

Figure 8(a) shows an example using bit shift and bitwise 

logical operations, while Fig 8(b) shows an example using a 
union.  

long convert_endian(long data) 

{ 
    return (((data << 24) & 0xff000000) | 

((data << 8)  & 0x00ff0000) | 
((data >> 8)  & 0x0000ff00) | 

((data >> 24) & 0x000000ff)); 

} 
(a) 

long convert_endian(long data) 

{ 

    union { long l; char c[4] } in, out; 

    in.l = data; 
    out.c[0] = in.c[3]; 

    out.c[1] = in.c[2]; 

    out.c[2] = in.c[1]; 
    out.c[3] = in.c[0]; 

    return out.l; 
} 

(b) 

Figure 8: C source code examples for endian conversion 

Figure 9: Inline assembly expansion for endian conversion 

To reduce the overhead of the conversion, expansion of 

macros similar to Figure 8(a) instead of function call is 
probably effective.  

If the compiler itself can be modified or the existing 

compiler accepts inline assembler expansions, conversion 
overhead can be further reduced by embedding machine 

instructions such as shown in Fig 9.  In contrast to SPARC 

[6] CPU architecture which needs fifteen instructions roughly
corresponding to Fig 8(a) for conversion, i486 [7] needs only

one instruction which can be executed in about single

machine cycle.

3.2 Alignment of Structure Members 

For the structures of which representation type is standard, 
all the offsets of the members from top of the structures 

should meet the most severe alignment requirement of the 

machines.  To meet this requirement by preprocessor, dummy 
members are inserted to the declaration of standard structures.  
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Figure 10: Compilation steps for extended C language 

standard struct { 

    char c; 
    int i, j; 

    double d; 

} t; 

struct { 
    char c, _dummy1[3]; 

    long i, j, _dummy2; 

    double d; 
} t; 

3.3 Allocation of Shared Variables 

If compiled separately, layout of variables in the shared 

memory may become different among machines.  As shown 

in Fig 10, the compiler (or the preprocessor) is modified to 
collect all declarations of shared storage class variables in all 

source files and another compiler step is added to fix the 

layout of shared memory satisfying the most severe 
alignment requirement of the machines, which is fed to the 

linkage editors.  Furthermore, a routine to map the shared 

memory to the address determined at the compilation time 
should be added to the startup time of the execution in each 

machine. 

4 PERFORMANCE EVALUATION 

As one of the experiments to show the practicality and 

effectiveness of proposed compiler system, we measured the 
overhead of representation type conversion.  In the 

experiment, two SPARCstations (big endian, SunOS 4.1.3) 

and one IBM PC compatible machine called i486pc (little 
endian, 386bsd-0.1) are connected by replicated type shared 

memory called SCRAMNet [8].  Parallel sorting algorithm 

known as Batcher's Merge-Exchange Sort [9] was 
implemented on the hardware.  Figure 11 shows performance 

of single processor execution by relative value to the case of:  

(a) SPARCstation

(b) i486pc

Figure 11: Overhead of endian conversion 

⚫ standard representation type is set to the same endian as

the native representation type and compiled by the
proposed compiler system (denoted as ‘no conversion’).

The other two cases are: 

⚫ standard representation type is set to the opposite endian

to the native representation type and compiled by the
proposed compiler system (denoted as ‘conversion by

xcc’)

⚫ standard representation type is set to the opposite endian

to the native representation type, conversion functions

are written in C, and compiled by GNU CC (denoted as
‘conversion by function call’)

In all the three cases, measurement is done for both sorting 
integer data themselves in the shred memory (denoted as 

‘integer’), and sorting shared pointers to the data rather than 

data themselves (denoted as ‘pointers’).  
For both SPARCstation and i486pc, overhead of 

representation type conversion is reduced by embedding 

instructions for representation type conversion by the 
proposed compiler system.   
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Table 2: Number of instructions in the innermost loop 

SPARCstation i486pc 

integer pointer integer pointer 

Total number of instructions 52 86 33 42 

Number of instructions for 

endian conversion 
30 62 2 8 

Especially for i486pc, which has special instruction for 

endian conversion, overhead is reduced to less than 10%.  On 

the other hand, for SPARCstation, even when the proposed 
compiler system embed instructions for representation type 

conversions, overhead reaches 15〜25%.  Table 2 shows the 

number of instructions in the innermost loop in the assembly 
code file.  For SPARCstation, the ratio of number of 

instructions for representation type conversion to the total 

number of instructions is very large, which results in the large 
overhead.  

Note that, on the hardware used here, absolute performance 
(MIPS) of SPARCstation exceeds that of i486pc even 

considering overhead of representation type conversion.  To 

select which endian to use for standard representation type, 
many factors such as performance of the processors, load 

distribution, access frequency of shared variables should be 

considered.  

5 CONCLUSION 

In this paper, a compiler system to support memory shared 

by heterogeneous machines is discussed.  A keyword standard 

for representation-type-specifier and another keyword shared 
for storage-class-specifier are added to language C.  A 

prototype compiler is implemented on SPARCstation 

(SunOS 4.1.3) and IBM compatible PC (386bsd-0.1).  
Overhead of endian conversion is small for the machines 

equipped with byte-swap instruction. 
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