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Abstract - In this paper, we focus on the problem of im-
plementing a periodic concurrent system with timing con-
straints into multi-context dynamically reconfigurable proces-
sors (DRP). A concurrent system has multiple tasks that can
be executed in parallel. Moreover, some tasks in a specific
set of processes might be required to synchronize each other.
We propose a method for assigning tasks into a multi-context
DRP such that timing constraints of the system are satisfied
and the size of the program area required on each context
for implementing the given system is minimized. However
this problem is a combinatorial problem. Thus we propose
a heuristic algorithm for solving the problem efficiently. Ex-
perimental results show that the proposed method can derive
a quasi-optimal assignment in a short time.

Keywords: real-time system, dynamically reconfigurable
processor, task assignment, heuristic algorithm

1 Introduction

Recently it has been required to manufacture a wide vari-
ety of embedded systems in small quantities in a short period
of time. For the purpose, many embedded systems have been
implemented to reconfigurable devices. With the advent of
modern field programmable devices, many systems are im-
plemented using small sized reconfigurable devices such as
Dynamically Reconfigurable Processors (DRPs). These de-
vices have many logical areas and can utilize these areas ef-
ficiently. A system can be implemented into a DRP by de-
composing and allocating its multiple contexts into its logical
areas.

Many systems are generally real-time systems with tim-
ing constraints. A proper decomposition or implementation
of a real-time system into a multi-context DRP requires that
the decomposed contexts satisfy the timing constraints of the
given system. This is usually a hard task since the execu-
tion of decomposed contexts involves context switching and
proper scheduling by considering synchronization constraints
of the system. Moreover, a proper decomposition can take
into account reducing the size of the program area required
on each context for implementing the given system.

In this paper, a behavior (or a specification) of a system
is assumed to be given as a set of periodic concurrent pro-
cesses with timing constraints [1], [2]. Periodic systems are
used in many real-time application areas such as communica-
tion systems, multimedia systems, routers and so on [3]-[5].
We assume that all processes have the same time period N;. A
process consists of a finite length of sequences of tasks, which
can be represented in the form of a tree structure. A task cor-
responds to a functional module of the system. We assume
that each task has several attributes such as its starting time,
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execution time, size (representing the program area necessary
for implementing the task), timing constraint, temporal order-
ing relation with other tasks in the same process, and synchro-
nizing condition with specific processes in the system.

We focus on a problem of decomposing a given periodic
concurrent system and assigning its tasks into a multi-context
DRP. The multi-context DRP can change its contexts dynami-
cally in order to switch executable sub-modules. All the tasks
on the same context can be executed in parallel. However,
tasks assigned to different contexts cannot be executed simul-
taneously. Thus, we need assign those tasks carefully into a
multi-context DRP so that all the tasks do not violate their
timing constraints. We present a method for decomposing a
given concurrent system and assigning its tasks into a multi-
context DRP in such a way that the timing constraints of the
system hold and that the maximum size of the programmable
logic areas used on the target contexts is minimized. We pro-
pose a heuristic algorithm to solve this problem since it is a
combinatorial problem. The proposed algorithm consists of
three steps. First, given a system, the algorithm derives all
tasks which satisfy the timing constraints of the system. Next,
it constructs a task dependence graph about tasks’ execution
time range satisfying their timing constraints. Then, it assigns
the tasks into contexts of a DRP according to the graph.

In the experimental results, we have confirmed that the pro-
posed heuristic algorithm derives quasi-optical assignment re-
sults for large size examples in short time.

2 Related Work

A lot of research work has been carried out on partitioning
and scheduling systems into reconfigurable systems [6]-[13].
The work in [6] targets a general multi-context reconfigurable
architecture and focuses on context scheduling considering
the overheads of context switching.

The work in [7] deals with temporal partitioning and schedul-
ing of data flow graphs into reconfigurable computers. In par-
ticular, the work considers minimizing the additional number
of configurable logic blocks of an FPGA.

In [8] a method for the synthesis and temporal partitioning
of reconfigurable systems is provided. The method considers
minimizing the number of ports of a DRP internal memory.
In [9], a 0-1 non-linear programming model is given for tem-
poral partitioning and high-level synthesis for implementing
a system of reconfigurable processors. The model consid-
ers minimizing the size of data communication among par-
titioned tasks. A data scheduler for multi-context reconfig-
urable architectures is provided in [10]. The scheduler mini-
mizes the size of data communication between DRP’s exter-
nal memory and its Programmable Logic Area (PLA).



In [11] and [12] partitioning methods are presented for re-
configurable systems considering parallelization of tasks, ac-
curate reconfiguration overhead, and minimization of the to-
tal computation time of the system. In [13] a method for task
scheduling with configuration prefetching during reconfigu-
ration overhead is given. An ILP model for minimizing the
total computation time of the system is provided. The model
takes into account reconfiguration overhead and a given limit
on the size of the programmable logic area.

Similar to our work, the above described work targets re-
configurable architectures. However, the system models con-
sidered in the above work consider order relations among
tasks for tasks with no timing constraints. The work given
in [5] uses a similar task model as the one presented in this
paper, i.e. concurrent, periodic, and with time constraints.
However, unlike our work, the work given in [5] does not
consider reconfigurable architectures. In this paper, we use
concurrent periodic task model with timing constraints over
multi-context reconfigurable processors.

3 Target concurrent system and DRP

3.1 Real-time system model

3.1.1 Definition of system

In this paper, a concurrent periodic real-time system is de-
scribed as a 4-tuple System = (Processes, Tasks, clock,
Ny). Processes denotes a set of processes. Tasks denotes
a set of tasks used in the system. clock is an integer counter
that counts the elapsed time from the initial state of the sys-
tem, and IV, is an integer that denotes the time period of the
system.

A process in Processes consists of a finite length of se-
quences of tasks in T'asks that can be represented in the form
of a tree structure. The root node of a tree structure represents
the initial state. A sequence of consecutive tasks starting from
the initial state (root node) and ending at a leaf node is called
a path. All processes of the system have the same time period
N;. Each process executes tasks in one of its paths until it
reaches the end of the path. If the time period NV, has passed
before reaching the end of the path, clock is reset to 0 and the
process returns to its initial state. Note that we assume any
process does not have loops. A simple example of a concur-
rent system Systeml is shown in Fig. 1. Systeml consists
of 2 processes: Processl and Process2. Processl
consists of two paths {P11 and P12}, and Process2 con-
sists of two paths {P21 and P22}.

In our model, we assume some tasks can synchronize among
a specific set of processes. The synchronization relation as
well as the behavior of each process is formally specified as
follows using the operators in LOTOS language [14].

S = (S |[task-list]| S) | (S|||S) | P
P := task; P | (P[JP) || task

Here, S denotes a concurrent system, and P denotes a pro-
cess. In S, |[task_list]| denotes the synchronous parallel op-
erator where task_list is a list of tasks to be synchronized
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Figure 1: An example of a system, Systeml

between its operator’s both sides of processes. If the same
task s is specified in two processes P1 and P2, and if those
processes are combined with the synchronous parallel oper-
ator P1|[s]|P2, the task s in P1 and P2 must be executed
simultaneously. The operator ||| is the asynchronous parallel
operator, and it denotes that its operator’s both sides of pro-
cesses can run in parallel without any synchronization. In P,
the operator [] is the choice operator, and (P1[]P2) denotes
that either P1 or P2 is executed. The choice operator [] corre-
sponds to a branch in a given process’s tree structure. task; P
denotes the sequential composition of tasks.

Each task 7 has a variable ¢ 514, (7) and four attributes (Teye (7),

Tprew(T), guard(7), size()). Although each task may ap-
pear in many paths of a given process if it can appear only
once in any path of the process, here we assume that each
task can appear only once in each process. The integer vari-
able tgqr¢(T) denotes the starting time of task 7. Teye(7) is
an integer value denoting the duration (or execution time) of
task 7. Here, we assume the execution of a task is not inter-
rupted by other tasks. 7,,..,(7) denotes the previous task of 7.
A guard(T) denotes timing constraints that 7 has to satisfy,
and it is represented as a logical product of timing constraints,
each of which is represented as a linear inequality over vari-
ables {tstart(7')|7 is an ancestor task of 7}. size(7) denotes
the size of 7, and it corresponds to the size of the program
area necessary for implementing 7.

In (Processl| [s] |Process2) in Fig. 1, task s in
Processl and Process?2 must be executed simultaneously.
When the synchronous task s is executed simultaneously, both
the guards in the two processes must hold. Given a sys-
tem of n processes, pri, - -+, pry, each of which has a set
of finite lengths’ paths PathsP™, ---, PathsP™, a path-
combination is a list of n paths {< p1,---,pp > | p1 €
PathsP™, - -+, p, € PathsP™ }. All (syntactical) path com-
binations in Fig. 1 are m1:<P11,P21>,m2:<P11,P22>,
m3:<P12,P21>,andm4:<P12,P22>,

However, the path combinations m2 and m3 cannot be exe-
cuted until their leaf nodes since the synchronous task s can-
not be synchronized between two processes. The path com-
binations m1 and m4 are syntactically possible path combina-
tions. We describe about behavior of a system as follows.

3.1.2 Behavior of system

A task 7 is valid (executable) in a path-combination m, de-
noted valid, s (T, m), if and only if it satisfies the following



three constraints:
The previous task 7p,¢,(7) has finished its execution.
guard(T) is true.
T ends its execution before the time period N;.

Those constraints can be represented using the following lin-
ear constraints:

guard(T) A (tstart(T) + Tege(T) < Ny)
(7 is the initial task of a path).
(tstart(T") + Tewe(T') < tstart(T)) A guard(t)
A(tstart(T) + Teze(T) < Ny)
(otherwise) (77 denotes Tpye, (T)).

A valid path of a process consists of a sequence of only
valid tasks.

If a path combination m which consists of valid paths sat-
isfies the following conditions, m is called a valid path com-
bination:

m contains all synchronized tasks T'asksyn(7) of each
task 7 in m.

Each task 7 which should be synchronized with tasks
can start at the time when the synchronized tasks start.

The latter constraint can be represented using the following
linear constraint:

vrl e TaSksync(T) (tstart (T) = Cstart (7-/))

For this reason, a path combination which consists of only
valid paths could not be valid.

A system is execute a valid path combination each period.
If the system executes tasks in any invalid path combination,
the system cannot reach their leaf nodes before the time pe-
riod N; has passed. This corresponds to either case of (i) a
deadlock occurs, or (ii) a given task cannot be executed be-
fore the time period N; has passed. Here, we focus on the
implementation of all tasks in all valid path combinations of
a given concurrent system.

3.2 Dynamically Reconfigurable Processors

Recent DRP consists of multiple contexts with several tiny
processors called Processing Elements (PEs). The contexts of
a DRP represent logical configurations of a PLA, and the DRP
can switch its contexts dynamically with small overheads.
Recently, many DRP’s have been developed by companies
and research institutes [15]-[19]. NEC Elect. Corp. has de-
veloped a multi-context DRP with the same program area size
[15]. IPFlex Inc. has developed DAPDANA-2 [16], Singh et
al. at U.C. Irvine have developed MorphoSys [17], Goldstein
et al. in Carnegie Mellon Univ. have developed PipeRench
[18], and Mei et al. in IMEC have developed ADRES [19].
DRPs can implement the systems at their programmable logic
areas efficiently. Additionally, DRPs can hold many con-
figurations, which are context assignments of a given sys-
tem, without changing their logical area size. For example,
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the system implemented into a DRP can handle computation
load flexibly by utilizing several configurations that mount the
same function but with different performance and power con-
sumption.

In this paper, we adopt a multi-context DRP architecture
with the same program area size and a constant switching
overhead, which is close to the multi-context DRP model of
NEC Elect. Corp. in [15]. We define the target multi-context
DRP as DRP = (N, maZcont, Lswitch), where N, denotes
the number of contexts of the DRP, and maxcon: and Tsyitch
denote the size limit of the contexts and the context switching
overhead, respectively.

When we implement a concurrent system defined above on
the target multi-context DRP, it might occur a case that we
cannot execute all valid path combinations of a given con-
current system due to the shortage of contexts, the context
switching overhead and/or the size limit of contexts. For a
given concurrent system Sys, if an implementation /mp on
a multi-context DRP can execute all valid path combinations
in Sys, then we say that Imp is a correct implementation of
Sys. Hereafter, we discuss about a method to derive a correct
implementation Imp on a target multi-context DRP from a
given concurrent system Sys.

[ Configuration of Logic Area

Connected Processing Elements » ,“

I
/ L7
Programmable
LogicArea 2/ /-~
/ 4
L 7
/M

A State transition controller (STC)
STC
A /L / [ switches contexts dynamically
(a) Architecture of DRP

Context n

]

(b) Concept of Context Switching

Figure 2: An architecture of DRP

4 System Decomposition into DRP

A system is decomposed into contexts of a DRP in order to
implement a system on DRP. The decomposed system should
also satisfy the timing constraints of the system.

In this section, we propose a heuristic algorithm to assign
tasks in a system into contexts of a DRP so that all the tasks
execute satisfying their timing constraints.

4.1 Problem Definition

Inputs:
A system System
DRP = (N¢, Tswitch)-

(Task, clock, Ny), and a DRP

Output:
N, sets of tasks each of which is assigned into a con-
text.

Constraints:
A set of valid path-combinations of the system is in-
variant whenever the system is assigned into the DRP
and all the valid path-combinations are executable.



Objective:
To minimize the size of contexts of the DRP.

4.2 Proposed Heuristic Algorithm

The proposed algorithm consists of three parts: (1) to de-
rive all tasks in valid path combinations, (2) to construct a task
dependence graph about tasks’ valid time range, and (3) to
assign tasks into contexts according to the graph. For simpli-
fication of this problem, we assume that the context switching
overhead T itcn 1 zero. In our future work, we will consider
about the overhead.

4.2.1 Valid Time Range of Each Task

First, we derive all tasks in valid path combinations of a given
system.

Given a task 7 in a path p, a valid time range of T in p, de-
noted vrange(r, p), is defined as the range between the ear-
liest startable time t.4 (7, p) of 7 in p, and the latest startable
time ¢, (7, p) of 7 in p. The earliest starting time teq:(7, p)
is calculated as the minimal value that makes validiqsk(T. D)
true in p. Moreover, if 7 is the last task of p, then ¢;5(7, p)
is calculated as the maximal value that makes validiqsk(T, P)
true in p. Otherwise, given the task 7’ of p and its previ-
ous (parent) task 7 of 7/, t;5;(7, p) is calculated as the max-
imal value of (a) the maximal value of ¢s;4,+(7) that makes
validigs, (T, p) true in p and (b) (t15¢(7') — Tewe(7)). An ex-
ample of the valid time range of tasks in a path is shown in
Fig. 3.

Valid time range of s
s O 0 ]
(Texe:3) 27T 5
size=4
e al .
(TEXE=5) L
size=5 8
10
u +
(Texe=4) 12
size=2 141
N=164-------- - R
System Period Nt= 16 At t_he | Atthe
earliest ' latest
(a) A valid path p1 (b) A valid time range

Figure 3: Valid time range

Given a path p and a task 7 in p, the earliest startable time
test (T, p) and the latest startable time ¢;5; (7, p) are calculated
from guard(T) as follows. Here, 7 and 7’ are tasks in a path p,
k denotes a coefficient value, and D denotes a set of terms of
the other tasks’ variables and constant terms. If an inequality
in guard(t) is expressed as tsart(7) < k - tstare(7') + D
then

tlst(Tv p) ~— min (tlst (T:p)7 k- tlst(Tlvp) + D) and
(1a)
s 5 - D
test(lep)  max (test(T/vp)7 %) ) (1b)
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tstart (T: p) < D — k : tstart(Tlvp) thel’l

and

(22)

) , (2b)

tlst(T:p) < min (tlst(Tv ]))7 D—k- test(Tlap))

D —test (T: p)

tlst(7—17p) — min (tlst(Tl7p)a L

tstart(T) >k - tstare(7") + D then

test(T,p) < max (tes(7,p), k - test(7',p) + D)  and
(3a)
tist(7',p) < min (tlst(Tlvp)a M) ; (3b)
O toiart(T) > D — k - tgare (7') then
test(7.p) <= max (test(7.p), D — k- t154(7',p)) and
(42)
toar'p) e (1.0, 2L ) G

A task 7 in a path p is valid if t.s (7, p) and ¢, (7, p) are
defined (i.e., they have values) and (t.s:(7,p) < tise(7,D)).
Otherwise, task 7 in path p is invalid, and p is also invalid.

Next, we consider about synchronizations among tasks. A
task 7 and a set of synchronized tasks T'asksync(T) with 7
should start their execution simultaneously. Thus, given 7
and T'askgsync(T), test(T, p) and t;st(T, p) are recalculated as
follows:

test (T’,p/) — max(test (T:p)avTN(test (Tﬂap”)))v and
(5a)
tise(1',p") = min (L (7, p), V7" (tise (7", ")) (5b)

Here, 7/, 7" € {7} U Tasksyn.(7), and p" and p”" denote
paths which contain 7" and 7", respectively. tes:(7,p) and
t1st (7, p) of all tasks in a path are updated as recalculated by
Egs. (1a)—(4b) whenever at least one of them in the path is
recalculated. A valid path consists of valid tasks after the
recalculation about synchronization.

Finally, we derive a valid process. Given a process pr, a
task 7 in pr and all the valid paths p1, - - - p,, which contain 7
in pr, test(r,p;) and t;st(r,p;) (i € {1,--- ,n}) are recal-
culated as follows:

lest (T, pi) < max (test (Tw pj)) , and (6a)
je{l,-- ,n}
tist(T, i) — je{q{-i-n,n} (tlst (T7pj))' (6b)

Here,j € {1,--- ,n}. test(7,p) and t;5(7, p) of all tasks in a
path are updated too whenever at least one of them in the path
is recalculated. A valid process consists of valid paths after
the recalculation about .

A valid system consists of valid processes. In each period a
valid system executes one of path combinations which consist
of paths in each valid process one by one.



4.2.2 Construction of Task Dependency Graph about Valid

Time Range

In a valid system, a task starts its execution within its valid
time range. st(7) denotes the time when an implemented task
7 into a DRP starts its execution. We call st(7) a scheduled
time of 7. We can decide st(7) within the valid time range
of 7. We call this decision of st(7) a scheduling. A task
T is running on a DRP between the time st(7) and st(7) +
Texe(T). We call this time range a running time range.

Given two tasks 7 and 7, they should be assigned into a
same context of a DRP if the running time range of 7; and that
of 7 overlap. On the other hand, if the running time ranges
do not overlap, 71 can be assigned into different contexts from
79 so that the maximum size of contexts is reduced.

Given a task 7 in a path p, the earliest end time and the
latest end time of T in p are calculated as test (7, P) + Tewe(T)
and ¢4 (7, p) + Tere (T), respectively, as shown in Fig. 4. The
running time range of 7 depends on the scheduling of st(7).
However, the time range when 7 is surely running can exist
regardless of the scheduling of 7. We call such time range
a surely running range as shown in the figure. If ;5 (7) <
test + Tewe(T), the surely running range of a task 7 is given
as the time range between ¢;5;(7) and tes¢(7) + Tege(7) , oth-
erwise the surely running range is empty. Note that ¢, (7)
and t;5(7) denotes t.s: (7, p) and t;5 (7, p) in any path p in
a valid process, because t¢s:(7, p) is same as tes:(7,p') in a
valid process regardless of paths p and p’. The runnable range
of a task 7 is given as the time range between t.s:(7) and
t15¢(T) + Teze(T) as shown in the figure. Finally, given two

Lateststartable Earliest startable

[toard0)>1 0 = \ R

b 2

b .
(Texs=3) 4 T b Earliest end| P i’\ )
\ /
[true] 6 o Latestend

c c

(Texs=5) 8
N=107--- ==~~~ e Runnable range
P11 t At the At the
earliest latest Surely running range

System Period Nt= 10

(a) A path (b) Runnabletimechart  (c) Runnable time range

Figure 4: Runnable time range

task 71 and 7o, they should be assigned into a same context if
the surely running range of 7; and that of 75 overlap. Also,
they can be assigned into different contexts if the runnable
range of 7; and that of 7 do not overlap.

In the proposed algorithm, we construct a graph where a
node represents a task in a valid system and an edge between
two tasks represents a relation whether they should/can be as-
signed into a same context. We call this graph a task depen-
dency graph. We give a single edge between any two tasks the
runnable range of which overlaps each other. We also give a
double edge between any two tasks the surely running range
of which overlaps each other. However, we do not give any
edge between two tasks if at least one of the following condi-
tions satisfies:

The tasks are in the same process and are not in the
same path, and
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All the paths which contain one of the task are not syn-
chronized with all the paths which contain the other
task.

For example, Fig. 5 shows the runnable time range and the
task dependency graph of the system in Fig. 1.
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07173 4
27 3 2H3 2/d 3 Runnablerange
4 T |a b
T4 4[] - 4[] -
1 5 5 5 5
671 slje 6 6 6 o -
s el|7
87T 8 8 9 8 8
Ne=10 - ---& ------------- S S -
tiand 4, + T, 10 10 10

exe

7 T Surely running range

exe

andz,,+

est

(a) Runnable Time Range
ST
(e

(b) Task Dependency Graph

| a d
S S

(Pr1) (Pr2)

Figure 5: Example of Systeml

4.2.3 Assignment Tasks into Contexts using Task Depen-
dency Graph

In this phase, we decompose the task dependency graph of a
given system into several smaller graphs of which the max-
imum size is as small as possible. If the number of derived
graphs is larger than the number of contexts ., the graphs
are merged into N, graphs. Finally, each the graph corre-
sponds to each context of a DRP.

Tasks connected by double edges in a task dependency graph
should be assigned into a same context of a DRP, because
they have run all together for at least one clock. Thus, we
decompose a task dependency graph keeping the size of the
maximum connected graph with double edges small.

In a task dependency graph, a single edge can be changed to
a double edge or no edge due to the scheduling of the edge’s
both end tasks. That is calculated by updating the runnable
time range of each tasks. Figures 6 and 7 show how to de-
compose a connected tasks.

Figure 6 shows an example of decomposing tasks connected
by double edges. By assign Task b into two contexts redun-
dantly, the size of the maximum connected tasks by double
edges can be reduced although the total size of implemented
tasks into contexts becomes larger. However, tasks in a clique
shaped by double edges cannot be decomposed.

Figure 7 shows an example of decomposing tasks connected
by single edges. Tasks connected by single edges can be as-
signed into a same contexts. It is also important to decom-
pose tasks connected by single edges and make the size of the
maximum connected tasks by single edges smaller. However,
as shown in Fig. 7, after the decomposition, the single edge
between Task a and b has been changed to a double edge.
Thus, it needs to be carefully chosen how a connected task is
decomposed.
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Figure 6: Example of Decomposing Tasks connected by Dou-
ble Edges

0
2
4
6
8
0

N=1
t
(a) Before decomposing

0+
T |a
| a | 27 E Context1
4+
G uummmns = anar t=6
| b | EI 8 T H }Contextz
NF=10 4

t
(b) After decomposing

Figure 7: Example of Decomposing Tasks connected by Sin-
gle Edges

Finally, after an assignment into contexts, the size of the
maximum context is at least Nic Here, S denotes the sum of
the tasks in a valid system, calculated as S = > _ size(7)
and note that IV, is the number of contexts of a DRP. There-
fore, in our algorithm, we decompose connected tasks in the
following order of priority:

1. the maximum connected tasks by only double edges

and the size of them is larger than -,

. the maximum connected tasks by double edges and sin-
gle edges and the size of them is larger than -,

. the maximum connected tasks by only double edges, or

the maximum connected tasks by double edges and sin-
gle edges.

A connected tasks is decomposed as follows.
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Step 1. C denotes a set of contexts. C is initialized to the set
of all tasks.

Step 2. Select one context ¢ from C by the priority as men-
tioned above. C' — C/{c}.

Step 3. Sort the tasks in ¢ by test.

Step 4. Find a clock ¢t when the tasks are divided into two
groups GG1 and G3. G consists of tasks with ¢ < ¢
and G4 consists of tasks with t.,; > t so that the total
size of each group is (almost) the same.

Step 5. Find the cut set between G and Ga.

Step 6. Given a double edge in the cut set and a task in G
is an end of the edge, the task is assigned to two new
contexts ¢ and cs. Other tasks in G; are assigned to ¢;
and the tasks in G2 are assigned into co.

Step 7. C «— C' UA{c1,ca}.
Step 8. Update the runnable time range of all the task.

Step 9. If all connected tasks in C are clique then end, else
goto Step 2.

We call a length between ¢4 and t;5; a deadline slack. When
a graph is decomposed to two subgraphs, it is important to
allocate the deadline slack to the subgraphs. In this algorithm,
we give half of the deadline slack to each of the subgraphs.
Later, we evaluate how the deadline slack is allocated into
two subgraphs.

After the decomposition, we have derived the sets of tasks
corresponding assignment into contexts. However, the num-
ber of the sets C' can be larger than N.. Thus, we merge the
sets into N, sets. In the proposed method, the smallest set of
C and the second-smallest set are merged until the number of
sets becomes N..

5 Evaluation

We have compared the performance of the proposed heuris-
tic algorithm. We implemented the algorithm in Java 5.0 on
a Core2 Duo 1.2GHz CPU, 2GB RAM with Microsoft Win-
dows XP Professional. We consider systems with m concur-
rent processes, each of which consists of n paths. For each
< m,n >, we randomly derive 20 systems. In the follow-
ing experiments, we have considered systems with the time
period Ny = 30 and DRPs with four contexts (N, = 4).

First, we evaluated how the deadline slack is divided into
two subgraphs at a ratio of. Table 1 shows the summary of
the obtained results for cases 5 : 5,6 : 4,7 : 3, and 8 : 2.
This results shows that it is the best for a deadline slack to be
divided into two subgraphs at a ratio of 5 : 5.

Next, we have compared the performance of the proposed
heuristic algorithm with a general ILP solver w.r.t. the ex-
ecution time necessary for obtaining a task assignment and
w.r.t. the quality of the obtained solutions. We used the ILP
solver GLPK[20] in our experiments. For each derived sys-
tem, we have derived its corresponding linear constraints, ap-
plied the proposed algorithm and the ILP solver, and found
assignments. Then we calculate the average execution time
of the algorithm and the ILP solver.Table 2 shows the sum-
mary of the obtained results for cases < 2,2 > and < 2,4 >.



Table 1: Maximum Context Size against Ratio of Deadline
Slack

[<mn>[<22>]<44>]<88>|
5:5 43.9 84.8 128.7
6:4 45.6 85.4 131.6
7:3 47.1 100.6 130.8
8:2 62.3 112.0 180.3

Table 2: Two Solver Results and Execution Time

<m,n > <2,2> <2,4>
size | time size | time
ILP 26.7 | 0.16 sec. || 35.0 | > 10h.
Proposed [ 27.7 | 78 msec. || 39.0 | 125 msec.

The results clearly show that the proposed algorithm outper-
forms the ILP in respect to execution time, and the difference
becomes remarkable as the size of the system becomes bigger.
For small systems < 2, 2 >, our method assigned the systems
with the average logical area size 27.7 within 78ms and the
ILP solver assigned it with the size 26.7 within 0.16sec. For
larger systems < 2,4 >, our method assigned the systems
with the average logical area size 39.0 within 125ms and the
ILP solver assigned it with the size 35.0 within 10hours.

6 Conclusion

In this paper, we have focused on a problem implementing
a periodic concurrent system with real-time constraints into
a multi-context DRP. We have proposed a heuristic algorithm
to solve the problem efficiently. In the experimental results,
we have confirmed that the proposed heuristic algorithm de-
rives quasi-optical assignment results for large size examples
in short time.

Considering the context switching overhead to our proposed
algorithm and applying it to several types of real systems are
our future work.
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